
Parallelism in
Modern C++
Task-based parallelism as the basis for all higher-level APIs

Hartmut Kaiser (hkaiser@cct.lsu.edu)

HPX
A General Purpose Parallel Runtime System for Applications of any Scale

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

2

HPX – A General Purpose Runtime
System
• General purpose parallel runtime system for applications of any scale

• Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel, distributed, and heterogeneous applications.

 Enables to write fully asynchronous code using hundreds of millions of threads.

 Provides unified syntax and semantics for local and remote operations.

• HPX represents an innovative mixture of

 A global system-wide address space (AGAS - Active Global Address Space)

 Fine grain parallelism and lightweight synchronization

 Combined with implicit, work queue based, message driven computation

 Full semantic equivalence of local and remote execution, and

 Explicit support for hardware accelerators and vectorization

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

3

HPX – A General Purpose Runtime
System
• Enables writing applications which out-perform and out-scale existing

applications based on OpenMP/MPI
 http://stellar-group.org/libraries/hpx

 https://github.com/STEllAR-GROUP/hpx/

• Is published under Boost license and has an open, active, and thriving
developer community.

• Can be used as a platform for research and experimentation

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

4

http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

C++1y Parallelism APIs

HPX – A General Purpose Runtime System

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

5

Threading Subsystem

Active Global Address

Space (AGAS)

Local Control Objects

(LCOs, Synchronization)

Parcel Transport Layer

(Network)

API

OS

Performance Counter

Framework

P
o
li

cy
 E

n
g
in

e
/P

o
li

ci
e
s

HPX – A General Purpose Runtime System

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

6

Threading Subsystem

Active Global Address

Space (AGAS)

Local Control Objects

(LCOs, Synchronization)

Parcel Transport Layer

(Network)

API

OS

Performance Counter

Framework

P
o
li

cy
 E

n
g
in

e
/P

o
li

ci
e
s

C++1y Parallelism APIs

HPX – The API
• As close as possible to C++1y standard library, where appropriate, for instance

 std::thread hpx::thread

 std::mutex hpx::mutex

 std::future hpx::future (including N4107, ‘Concurrency TS’)

 std::async hpx::async (including N3632)

 std::bind hpx::bind

 std::function hpx::function

 std::tuple hpx::tuple

 std::any hpx::any (P0220, ‘Library Fundamentals TS’)

 std::cout hpx::cout

 std::parallel::for_each, etc. hpx::parallel::for_each (N4105, ‘Parallelism TS’)

 std::parallel::task_block hpx::parallel::task_block (N4411)

 std::vector hpx::vector, hpx::partitioned_vector

• Extensions to the standard APIs, where necessary
 While maintaining full compatibility

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

7

Parallelism in C++
A Vision for Coherent Higher-level APIs without the need for
OpenMP, OpenAcc, or CUDA, etc.

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

8

Application

Execution Policies

Executors…
Executor

Parameters…

Concepts

Parallel

Algorithms
Fork-Join

Futures, Async, Dataflow

Asynchronous

Concepts and Types of Parallelism

Restrictions

Sequence,

Where
Grainsize

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

9

Types of Parallelism
• Current state of standard C++:

 Parallelism TS: iterative parallelism (moved to be included into C++17)

 Concurrency TS: task-based, asynchronous, and continuation style parallelism

 N4411: task blocks for fork-join parallelism of heterogeneous tasks

 N4406, PR0008R0: executors

 PR0057R0: resumable functions (co_await, etc.)

• Missing:
 Integration of the above

 Parallel ranges

 Vectorization is being discussed

 Extensions for GPUs, many-core, distributed, and high-performance computing

• The goal has to be to make parallelism in C++ independent of any external
solutions such as OpenMP, OpenACC, etc.
 HPX makes C++ independent of MPI as well

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

10

What is a (the) future
• A future is an object representing a result which has not been calculated yet

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization
with producer

 Hides notion of dealing with threads

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 (Turns concurrency into parallelism)

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

11

What is a (the) Future?
• Many ways to get hold of a future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()
{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42
}

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

12

Parallel Algorithms

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

13

Parallel Algorithms

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

14

Parallel Algorithms
• Similar to standard library facilities known for years

 Add execution policy as first argument

• Execution policies have associated default executor and default executor
parameters
 par parallel executor, static chunk size

 seq sequential executor, no chunking

• Rebind executor and executor parameters:

//
// Simplest case: parallel execution policy
//
std::vector<double> d(1000);
parallel::fill(

par,
begin(d), end(d), 0.0);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

15

Parallel Algorithms
• Similar to standard library facilities known for years

 Add execution policy as first argument

• Execution policies have associated default executor and default executor
parameters
 par parallel executor, static chunk size

 seq sequential executor, no chunking

• Rebind executor and executor parameters:

// rebind execution policy
// .on(): executor object, ‘where and when’
// .with(): parameter object(s), possibly executor specific parameters
std::vector<double> d(1000);
parallel::fill(

par.on(exec).with(par1, par2, ...),
begin(d), end(d), 0.0);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

16

Rebind Execution Policies

numa_executor exec;

auto policy1 = par.on(exec); // rebind only executor

static_chunk_size param;

auto policy2 = par.with(param); // rebind only executor parameter

auto policy3 = par.on(exec).with(param); // rebind both

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

17

Parallel Algorithms

// uses default execution policy: par

std::vector<double> d = { ... };

parallel::fill(par, begin(d), end(d), 0.0);

// rebind par to user-defined executor

my_executor my_exec = ...;

parallel::fill(par.on(my_exec), begin(d), end(d), 0.0);

// rebind par to user-defined executor and user defined executor parameters

my_params my_par = ...

parallel::fill(par.on(my_exec).with(my_par), begin(d), end(d), 0.0);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

18

Execution Policies (HPX Extensions)
• Extensions: asynchronous execution policies

 parallel_task_execution_policy (asynchronous version of
parallel_execution_policy), generated with par(task)

 sequential_task_execution_policy (asynchronous version of
sequential_execution_policy), generated with seq(task)

 In all cases the formerly synchronous functions return a future<>

 Instruct the parallel construct to be executed asynchronously

 Allows integration with asynchronous control flow

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

19

Execution Policies (HPX Extensions)
• Extensions: vectorization execution policies

 datapar_task_execution_policy (asynchronous version of
datapar_execution_policy), generated with datapar, datapar(task)

 dataseq_task_execution_policy (asynchronous version of
dataseq_execution_policy), generated with dataseq, dataseq(task)

 Instruct the algorithm to apply certain transformations to used data types allowing for
vectorization of code

 Requires external library: currently Vc (https://github.com/VcDevel/Vc), possibly Boost.SIMD

 Requires use of generic lambdas (C++14) or polymorphic function objects

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

20

https://github.com/VcDevel/Vc

Executors
• Executors must implement one function: async_execute(F && f)

• Invocation of executors happens through executor_traits which
exposes (emulates) additional functionality:

executor_traits<my_executor_type>::execute(

my_executor,

[](...){ // perform task },

...);

• Four modes of invocation: single async, single sync, bulk async and
bulk sync

 The async calls return a future

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

21

Executor Examples
• sequential_executor, parallel_executor:

 Default executors corresponding to par, seq

• this_thread_executor

• distribution_policy_executor

 Use one of HPX’s (distributed) distribution policies, specify node(s) to run on

• host::parallel_executor

 Specify core(s) to run on (NUMA aware)

• cuda::default_executor

 Use for running things on GPU

• Etc.

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

23

Executor Parameters (HPX Extension)
• Same scheme as for executor/executor_traits:

 parameter/executor_parameter_traits

• Various execution parameters, possibly executor specific

• For instance:
 Allow to control the grain size of work

 i.e. amount of iterations of a parallel for_each run on the same thread

 Similar to OpenMP scheduling policies: static, guided, dynamic

 auto_chunk_size, static_chunk_size, dynamic_chunk_size

 Much more fine control

 Used by parallel algorithms to adjust chunk size

 Specify GPU-kernel name for certain platforms

 gpu_kernel<foobar>

 Specify which other arrays to prefetch

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

24

Data placement

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

25

Data Placement
• Different strategies for different platforms

 Need interface to control explicit placement of data

 NUMA architectures

 GPUs

 Distributed systems

 Use std::allocator<T> interfaces

 NUMA architectures: first touch

 Slightly extended: bulk-operations for allocation, construction, destruction, and
deallocation

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

26

Data Placement
• HPX:

 hpx::vector<T, Alloc>

 Same interface as std::vector<T>

 Manages data locality through allocator

 Uses execution target objects for data placement

 Allows for direct manipulation of data on NUMA domains, GPUs, remote nodes, etc.

 hpx::partitioned_vector<T>

 Same interface as std::vector<T>

 Segmented data store

 Segments can be hpx::vector<T, Alloc>

 Uses distribution_policy for data placement

 Allows for manipulation of data on several targets

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

27

Data Placement
• Extending std::allocator_traits

 Adding functionality to copy data

 CPU: trivial

 GPU: platform specific data transfer, hooked into parallel::copy

 Distributed: maps onto network, possibly RDMA (put/get)

 Adding functionality to access single elements

 CPU: trivial

 GPU: slow, but possible

 Distributed: maps onto network

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

28

Execution Targets
One Ring to Rule them All

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

29

Execution Targets
• Opaque types which represent a place in the system

 Used to identify data placement

 Used to specify execution site close to data

• Targets encapsulate architecture specifics

 E.g. cuda::target, host::target

• Allocators to be initialized from targets

 Customization of data placement

 NUMA domain: host::block_allocator

 (possibly remote) GPU device: cuda::allocator

 Locality, i.e. (possibly remote) node

• Executors to be initialized from targets as well

 Make sure code is executed close to placed data

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

30

Examples and Results

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

31

Extending Parallel Algorithms

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

32
Sean Parent: C++ Seasoning, Going Native 2013

Extending Parallel Algorithms
• New algorithm: gather

template <typename BiIter, typename Pred>

pair<BiIter, BiIter> gather(BiIter f, BiIter l, BiIter p, Pred pred)

{

BiIter it1 = stable_partition(f, p, not1(pred));

BiIter it2 = stable_partition(p, l, pred);

return make_pair(it1, it2);

}

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

33
Sean Parent: C++ Seasoning, Going Native 2013

Extending Parallel Algorithms
• New algorithm: gather_async

template <typename BiIter, typename Pred>

future<pair<BiIter, BiIter>> gather_async(BiIter f, BiIter l, BiIter p, Pred pred)

{

future<BiIter> f1 = parallel::stable_partition(par(task), f, p, not1(pred));

future<BiIter> f2 = parallel::stable_partition(par(task), p, l, pred);

return dataflow(

unwrapped([](BiIter r1, BiIter r2) { return make_pair(r1, r2); }),

f1, f2);

}

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

34

Extending Parallel Algorithms (await)
• New algorithm: gather_async

template <typename BiIter, typename Pred>

future<pair<BiIter, BiIter>> gather_async(BiIter f, BiIter l, BiIter p, Pred pred)

{

future<BiIter> f1 = parallel::stable_partition(par(task), f, p, not1(pred));

future<BiIter> f2 = parallel::stable_partition(par(task), p, l, pred);

return make_pair(co_await f1, co_await f2);

}

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

35

STREAM Benchmark
• Assess memory bandwidth

• Series of parallel for loops, 3 arrays (a, b, c)

 copy step: c = a

 scale step: b = k * c

 add two arrays: c = a + b

 triad step: a = b + k * c

• Best possible performance possible only if data is placed properly

 Data has to be located in memory of NUMA-domain where thread runs

• OpenMP: implicitly by using ‘first touch’, i.e. run initialization and
actual benchmark using same thread

 #pragma omp parallel for schedule(static)

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

36

STREAM Benchmark
std::vector<double> a, b, c; // data

// ... init data

auto a_begin = a.begin(), a_end = a.end(), b_begin = b.begin() ...;

// STREAM benchmark

parallel::copy(par, a_begin, a_end, c_begin); // copy step: c = a

parallel::transform(par, c_begin, c_end, b_begin, // scale step: b = k * c

[](double val) { return 3.0 * val; });

parallel::transform(par, a_begin, a_end, b_begin, b_end, c_begin, // add two arrays: c = a + b

[](double val1, double val2) { return val1 + val2; });

parallel::transform(par, b_begin, b_end, c_begin, c_end, a_begin, // triad step: a = b + k * c

[](double val1, double val2) { return val1 + 3.0 * val2; });

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

37

STREAM Benchmark (CPU)
host::target tgt("numa=0"); // where and when, here CPU, NUMA domain 0

using executor = host::parallel_executor;

using allocator = host::block_allocator<double>;

executor exec(tgt); // define execution site

allocator alloc(tgt, ...); // define data placement

vector<double, allocator> a(alloc), b(alloc), c(alloc); // data

// ... init data

auto policy = par.on(exec).with(static_chunk_size()); // bound execution policy

// STREAM benchmark

parallel::copy(policy, a_begin, a_end, c_begin);

// ...

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

38

STREAM Benchmark: HPX vs. OpenMP

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

B
a

n
d

w
id

th
 [

G
B

/s
]

Number of cores per NUMA Domain

TRIAD STREAM Results
(50 million data points)

HPX (1 NUMA Domain)

OpenMP (1 NUMA Domain)

HPX (2 NUMA Domains)

OpenMP (2 NUMA Domains)

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

39

Extending to GPUs

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

40

STREAM Benchmark (GPU)
cuda::target target("Tesla C2050"); // where and when, here NVidia GPU (CUDA)

using executor = cuda::default_executor;

using allocator = cuda::allocator<double>;

executor exec(tgt); // define execution site

allocator alloc(tgt); // define data placement

std::vector<double> data = { ... }; // init data on host

hpx::vector<double, allocator> a(alloc), b(alloc), c(alloc); // data on device

parallel::copy(par, data.begin(), data.end(), a_begin); // copy data to device

// STREAM benchmark

// ...

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

41

STREAM Benchmark: HPX vs. OpenCL

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

42

Vectorization

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

43

Dot-product: Parallel Execution

std::vector<float> data1 = {...};

std::vector<float> data2 = {...};

inner_product(

par, // just parallel execution

std::begin(data1), std::end(data1),

std::begin(data2),

0.0f,

[](auto t1, auto t2) { return t1 + t2; }, // std::plus<>()

[](auto t1, auto t2) { return t1 * t2; } // std::multiplies<>()

);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

44

Dot-product: Vectorization

std::vector<float> data1 = {...};

std::vector<float> data2 = {...};

inner_product(

datapar, // parallel and vectorized execution

std::begin(data1), std::end(data1),

std::begin(data2),

0.0f,

[](auto t1, auto t2) { return t1 + t2; }, // std::plus<>()

[](auto t1, auto t2) { return t1 * t2; } // std::multiplies<>()

);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

45

0

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

6

7

0 2 4 6 8 10

V
e
ct

o
ri

z
a
ti

o
n

 S
p

e
e
d

u
p

S
p

p
e
d

u
p

 o
v
e
r

1
 C

o
re

Number of Cores

Dot-product of 100,000 Points

par

datapar

speedup

Dot-Product: Results

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

46

0

0.5

1

1.5

2

2.5

3

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

V
e
ct

o
ri

z
a
ti

o
n

 S
p

e
e
d

u
p

S
p

e
e
d

u
p

 o
v
e
r

1
 C

o
re

Number of Cores

Dot-product of 1,000,000 Points

par

datapar

speedup

0

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

V
e
ct

o
ri

z
a
ti

o
o
n

 S
p

e
e
d

u
p

S
p

e
e
d

u
p

 o
v
e
r

1
 C

o
re

Number of Cores

Dot-product of 10,000,000 Points

par

datapar

speedup

Partitioned Vector

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

47

Finding Min/Max on Host

std::vector<targets> targets = host::get_numa_targets();

partitioned_vector<int> v(size,

host::target_distribution_policy(targets));

host::numa_executor exec(targets);

generate(par.on(exec), v.begin(), v.end(), rand);

auto iters = minmax_element(par.on(exec), v.begin(), v.end());

std::cout << "Minimal element: " << *(iter.first);

std::cout << "Maximal element: " << *(iter.second);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

48

Finding Min/Max on GPU

std::vector<targets> targets = cuda::get_device_targets();

partitioned_vector<int> v(size,

host::target_distribution_policy(targets));

cuda::default_executor exec(targets);

generate(par.on(exec), v.begin(), v.end(), rand);

auto iters = minmax_element(par.on(exec), v.begin(), v.end());

std::cout << "Minimal element: " << *(iter.first);

std::cout << "Maximal element: " << *(iter.second);

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

49

Loop Prefetching

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

50

Automatic Loop Prefetching

std::vector<double> a, b, c;

parallel::for_loop(

par, 0, a.size(),

[&](int i) { a[i] = b[i] + 3.0 * c[i]; });

// add automatic prefetching for b and c

std::vector<double> a, b, c;

parallel::for_loop(

par.with(prefetch(b, c)), 0, a.size(),

[&](int i) { a[i] = b[i] + 3.0 * c[i]; });

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

51

Automatic Loop Prefetching (Results)

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

52

9
/1

9
/2

0
1

6
P

a
ra

ll
e
li

sm
 i

n
 M

o
d

e
rn

 C
+

+
 (

T
a

lk
 a

t
C

p
p

C
o
n

 2
0

1
6

),

H
a

rt
m

u
t

K
a

is
e
r

53

