Parallelism 1n
Modern C++

Task-based parallelism as the basis for all higher-level APIs

Hartmut Kaiser (hkaiser@cct.lsu.edu)



9/19/2016

HPX

A General Purpose Parallel Runtime System for Applications of any Scale

—~
Ne)
—
(@)
A
o]
o
Q
on
o8
—=
()
)
-
r—
;‘:
<
~—
+
+
=]
~
<))
=]
o
=
]
o=
=
e}
n
o=
—
<))
r—
r—
~
¥

o
9]
wn

o
<

N

=
=
=

A
r~—
<

an




9/19/2016

HPX — A General Purpose Runtime
System

- General purpose parallel runtime system for applications of any scale

- Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel, distributed, and heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of millions of threads.
* Provides unified syntax and semantics for local and remote operations.

- HPX represents an innovative mixture of
- A global system-wide address space (AGAS - Active Global Address Space)
* Fine grain parallelism and lightweight synchronization
* Combined with implicit, work queue based, message driven computation
+ Full semantic equivalence of local and remote execution, and
« Explicit support for hardware accelerators and vectorization

©
—
=
A
o
o
O
[}
>
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
.-
r—
[}
r—
r—{
ay]
=~
<
Ay

~
9]
n
o
<
r
=
=
=
-
~
<

@ STE||AR GROUP



9/19/2016

HPX — A General Purpose Runtime
System

- Enables writing applications which out-perform and out-scale existing
applications based on OpenMP/MPI

« http://stellar-group.org/libraries/hpx
- https://github.com/STEIAR-GROUP/hpx/

- Is published under Boost license and has an open, active, and thriving
developer community.

- Can be used as a platform for research and experimentation

©
—
=
A
o
o
O
[}
2
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
o=
r—
[}
r—
r—{
ay]
=~
<
Ay

~
9]
n
-
<
r
=
=
=
+
~
(o]

@ STE||AR GROUP


http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

9/19/2016

HPX — A General Purpose Runtime System

C++1y Parallelism APIs

Local Control Objects
(LCOs, Synchronization)

Performance Counter -
Framework

Active Global Address Parcel Transport Layer
Space (AGAS) (Network)

Threading Subsystem

e

0))
(@b)]
o
()
:
@)
o
~
()]
-
o
an
=
=
>
()
'o_p—:
(@)
A

©
—
=
A
o
o
O
(o
2
(@)
>
<
4
—
]
<
S
+
+
o
a
~
(%)
S
3
=
a
o=
(=]
(o]
)
o=
r—
[}
r—
r—{
ay]
=~
<
Ay

~
9]
n
-
<
r
=
=
=
+
-
(o]

@ STE||AR GROUP



9/19/2016

HPX — A General Purpose Runtime System

[

C++1y Parallelism APIs

—
o
x

=

Q
Q

2,
i
&)
-+

©
2d
r—
>

allelism in Modern C++

Par

@ STE||AR GROUP



HPX — The API

- As close as possible to C++1y standard library, where appropriate, for instance

 std::thread

-+ stdimutex

- std::future

* std::async

+ std:‘bind

- std::function

- std:tuple

- std::any

 std::cout

- std::parallel::for_each, etc.
- std::parallel::task_block
 std:vector

hpx:
hpx:
hpx:
hpx:
hpx:

hpx:
hpx:

hpx::'thread
th:I
hpx:
th:Z
bind

:‘function

‘tuple

:any (P0220, ‘Library Fundamentals TS’)
:cout

hpx::parallel::for_each (N4105, ‘Parallelism TS’)
::parallel::task block (N4411)

‘vector, hpx::partitioned_vector

mutex

‘future (including N4107, ‘Concurrency TS’

async (including N3632)

- Extensions to the standard APIs, where necessary

* While maintaining full compatibility

@ STE||AR GROUP

©
—
=
A
o
o
O
[}
>
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
.-
r—
[}
r—
r—{
ay]
=~
<
Ay

=
9)
n
o=
<
N
=
=
S
e
~
(o]

9/19/2016




Parallelism 1n C++

A Vision for Coherent Higher-level APIs without the need for
OpenMP, OpenAcc, or CUDA, etc.

~
Nej
—
=
N
g
]
Q
o
>
5
o
+
]
—
<
=
~—
+
+
a
~
5}
=
o
=
g
o=
—
=)
w0
o
—
)
—
—
<
~
g

o
[e]
)

o
(v}

e

=
=
=)

+
-
<

an




9/19/2016

Concepts and Types of Parallelism

Application

Parallel :

Restrictions —__

Futures, Async, Dataflow

Concepts . .. - ..
Sequence, P Execution Policies _—~ Grainsize

Where —_——
ﬁxecu‘cors Executor
- —H | Parameters...

o~
Nej
—
=
N
=}
Q
Q
N
S
o
55
oy
4
—
<
=
+
+
@)
=
o
=
o
=
]
o
g
wn
e
[}
—
—
=
~
<
Ay

~
5}
n
o=
o]
r
-
=
g
g
<
s

@ STE||AR GROUP



9/19/2016

Types of Parallelism

- Current state of standard C++:
- Parallelism TS: iterative parallelism (moved to be included into C++17)
* Concurrency TS: task-based, asynchronous, and continuation style parallelism
- N4411: task blocks for fork-join parallelism of heterogeneous tasks
+ N4406, PROOO8SRO: executors
- PRO057RO0: resumable functions (co_await, etc.)

- Missing:
 Integration of the above
+ Parallel ranges
* Vectorization is being discussed
- Extensions for GPUs, many-core, distributed, and high-performance computing

- The goal has to be to make parallelism in C++ independent of any external
solutions such as OpenMP, OpenACC, etc.

- HPX makes C++ independent of MPI as well

©
—
=
A
o
o
O
[}
>
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
.-
r—
[}
r—
r—{
ay]
=~
<
Ay

=
9)
n
o=
<
N
=
=
S
=
5
(o]

@ STE||AR GROUP



©
—
o
N
~~
S
—
~~
S

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 3
_ » Enables transparent synchronization S
Future object Locality 2 with producer UZ
Suspend S¥ T Execute . . . . g
Consumcr Future: = Hides notion of dealing with threads 5
thread (N -— =
L . » Makes asynchrony manageable -
Execute / L L.- thread i
another | = Allows for composition of several £
- Result is being asynchronous operations S .
esume returned E.2
B » (Turns concurrency into parallelism) b

@ STE||AR GROUP




o
—
S
[\
=~
(o))
—i
=~
(op)

What is a (the) Future?

- Many ways to get hold of a future, simplest way is to use (std) async:

int universal answer() { return 42; }

S

N

void deep_thought() S

{ )

: : . E

future<int> promised_answer = async(&universal_answer); =

&=

1

// do other things for 7.5 million years b
cout << promised_answer.get() << endl; // prints 42 =2

@ STE||AR GROUP



JOSTEY] INWIR
910¢/61/6 rey] e

AOHCN uo:! ) 36 ¥[8 ]) ++)) UISPOJA Ul WST[o[[eled

().
S
S
)
o p=i
=
o
<
]
D
—
v
=
v
a¥




Parallel Algorithms

adjacent difference adjacent find all of any of

Copy copy if copy n count

count if equal exclusive scan fill

fill n find find end find first of D
find if find if not for each for each n §
generate generate n includes inclusgive =Scan é
inner product inplace merge iz _heap iz _heap until (g
iz partitioned iz sorted iz sorted until lexicographical compare i%
max element merge min element minmax element é
mismatch move none of nth element E
partial sort partial sort copy partition partition copy :
reduce remove remove_ copy remove copy if 6
remove if replace replace copy replace copy if %
replace if reverse reverse copy rotate 3 .
rotate_copy zearch search n set_difference E.%
Zet _intersection get symmetric difference set union sort 5;%
stable partition stable sort swap ranges tranzform E g
uninitialized copy uninitialized copy n uninitialized fill uninitialized fill n E‘%
unigue unigue copy A T

@ STE||AR GROUP




Parallel Algorithms

- Similar to standard library facilities known for years
« Add execution policy as first argument

- Execution policies have associated default executor and default executor
parameters
« par > parallel executor, static chunk size
* seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:

@ STE||AR GROUP



Parallel Algorithms

- Similar to standard library facilities known for years
« Add execution policy as first argument

- Execution policies have associated default executor and default executor
parameters
« par > parallel executor, static chunk size
* seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:

@ STE||AR GROUP



Rebind Execution Policies

@ STE||AR GROUP



Parallel Algorithms

@ STE||AR GROUP



9/19/2016

Execution Policies (HPX Extensions)

- Extensions: asynchronous execution policies

parallel task _execution_policy (asynchronous version of
parallel execution_policy), generated with par(task)

sequential task _execution policy (asynchronous version of
sequential execution pollcy) generated with seq(task)

In all cases the formerly synchronous functions return a future<>

Instruct the parallel construct to be executed asynchronously

Allows integration with asynchronous control flow

Ne)
—
=
A
o
o
@)
[}
>
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
.-
r—
[}
r—
r—{
o
=~
©
Ay

=
9)
n
o=
<
N
=
=
=i
=
5
(o]

@ STE||AR GROUP



9/19/2016

Execution Policies (HPX Extensions)

- Extensions: vectorization execution policies

- datapar_task_execution policy (asynchronous version of
datapar_execution policy), generated with datapar, datapar(task)

- dataseq_task_execution_policy (asynchronous version of
dataseq_execution policy), generated with dataseq, dataseq(task)

* Instruct the algorithm to apply certain transformations to used data types allowing for
vectorization of code

- Requires external library: currently Ve (https://github.com/VcDevel/Ve), possibly Boost.SIMD

- Requires use of generic lambdas (C++14) or polymorphic function objects

©
—
=
A
o
o
O
[}
2
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
o=
r—
[}
r—
r—{
ay]
=~
<
Ay

=
9)
n
o=
<
N
=
=
g
=
5
(o]

@ STE||AR GROUP


https://github.com/VcDevel/Vc

9/19/2016

Executors

- Executors must implement one function: async_execute(F && f)

- Invocation of executors happens through executor_traits which
exposes (emulates) additional functionality:

executor traits<my_executor_ type>::execute(
my_ executor,
[1(...){ // perform task },
ced);

- Four modes of invocation: single async, single sync, bulk async and
bulk sync
« The async calls return a future

©
—
=
A
o
o
O
[}
2
(@)
>
(ay]
4
—
«
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
(=]
(o]
)
o=
r—
[}
r—
r—{
ay]
=~
<
Ay

&~
)
0
o=
r_v\")
r
=
=
=
+
~
(o]

@ STE||AR GROUP



9/19/2016

Executor Examples

sequential executor, parallel executor:
« Default executors corresponding to par, seq

this thread executor

distribution policy executor
- Use one of HPX’s (distributed) distribution policies, specify node(s) to run on

host::parallel executor
- Specify core(s) to run on (NUMA aware)

cuda: :default executor
 Use for running things on GPU

- Ktc.

Ne)
—
=
A
o
o
@)
[}
2
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
o=
r—
[}
r—
r—{
o
=~
©
Ay

~
9]
n
-
r
=
=
=i
+
~
(o]

@ STE||AR GROUP



9/19/2016

Executor Parameters (HPX Extension)

- Same scheme as for executor/executor_traits:
* parameter/executor_parameter_traits

- Various execution parameters, possibly executor specific

- For instance:

+ Allow to control the grain size of work
 1.e. amount of iterations of a parallel for_each run on the same thread
« Similar to OpenMP scheduling policies: static, guided, dynamic

* auto_chunk size, static chunk _size, dynamic_chunk size

* Much more fine control
- Used by parallel algorithms to adjust chunk size

« Specify GPU-kernel name for certain platforms
* gpu_kernel<foobar>

+ Specify which other arrays to prefetch

Ne)
—
=
A
o
o
@)
[}
2
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
o=
r—
[}
r—
r—{
o
=~
©
Ay

&~
)
0
o=
r_?'\)
r
=
=
=
i
~
(o]

@ STE||AR GROUP




JOSTEY] INWIR
910¢/61/6 rey] e

18 Y[B],) ++) UISPOJA Ul WSI[e[[BIR]

<+
-
D
S
D
Q
v
—
Q
S
<+
!
-




9/19/2016

Data Placement

- Different strategies for different platforms
* Need interface to control explicit placement of data
- NUMA architectures
- GPUs
+ Distributed systems
- Use std::allocator<T> interfaces
« NUMA architectures: first touch

+ Slightly extended: bulk-operations for allocation, construction, destruction, and
deallocation

Ne)
—
=
(A
o
o
@)
[}
R
(@)
>
4
—
<
S
+
+
(@)
a
~
(%)
S
o
]
=
a
o=
-
(o]
)
o=
r—
[}
r—
r—{
=~
Ay

&~
)
0
o=
(v}
Ne
e
=
=i
=
<
<

@ STE||AR GROUP




9/19/2016

Data Placement

- HPX:
* hpx::vector<T, Alloc>
« Same interface as std: :vector<T>
- Manages data locality through allocator
- Uses execution target objects for data placement
+ Allows for direct manipulation of data on NUMA domains, GPUs, remote nodes, etc.

* hpx::partitioned_vector<T>
* Same interface as std: :vector<T>

* Segmented data store
+ Segments can be hpx::vector<T, Alloc>

* Uses distribution_policy for data placement

+ Allows for manipulation of data on several targets

Ne)
—
=
A
o
o
@)
[}
2
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
o=
r—
[}
r—
r—{
o
=~
©
Ay

&~
)
0
o=
r_?'\)
r
=
=
=
i
~
(o]

@ STE||AR GROUP




9/19/2016

Data Placement

- Extending std::allocator_traits

- Adding functionality to copy data
- CPU: trivial
« GPU: platform specific data transfer, hooked into parallel: :copy
- Distributed: maps onto network, possibly RDMA (put/get)

- Adding functionality to access single elements
« CPU: trivial
« GPU: slow, but possible
+ Distributed: maps onto network

Ne)
—
=
(A
o
o
@)
[}
R
(@)
>
4
—
<
S
+
+
(@)
a
~
(%)
S
o
]
=
a
o=
-
(o]
)
.-
r—
[}
r—
r—{
=~
Ay

~
[e]
)
o=
<
N
p=
=
=)
-
—
<

@ STE||AR GROUP




9/19/2016

Execution Targets

One Ring to Rule them All

~
Nej
—
=
N
g
]
Q
o
>
5
o
+
]
—
<
=
~—
+
+
a
~
5}
=
o
=
g
o=
—
=)
w0
o
—
)
—
—
o]
~
&

o
()
0

o=
<

N

=
=
=

A
r~—
<

s




9/19/2016

Execution Targets

- Opaque types which represent a place in the system
+ Used to identify data placement
- Used to specify execution site close to data

- Targets encapsulate architecture specifics
- E.g. cuda: :target, host::target

- Allocators to be initialized from targets
« Customization of data placement
 NUMA domain: host::block _allocator
- (possibly remote) GPU device: cuda: :allocator

- Locality, i.e. (possibly remote) node

Ne)
—
=
A
o
o
@)
[}
>
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
o=
r—
[}
r—
r—{
o
=~
©
Ay

=
9)
n
o=
<
N
=
=
=i
=
5
(o]

- Executors to be initialized from targets as well
- Make sure code 1s executed close to placed data

@ STE||AR GROUP



JOSTEY] INWIR
910¢/61/6 rey] e

AOHCN 19(0) ) 36 ¥[8 ]) ++)) UISPOJA Ul WST[o[[eled

n
=
-
n
QD
a=
g,
-
4y
n
D
pr—i
Q
S
v
PY
]




9/19/2016

Extending Parallel Algorithms

- . RN
| ===——=]

—
=
N
=}
Q
Q
on
i
o
+
<
]
—
<
>
+
+
<
=]
~
)
=
=
=
]
o
g
wn
]
—
)
—
—
(]
~
<
ol

~
9]
n
o=
3
r
=
=
=i
=
~
©

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP




Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP



Extending Parallel Algorithms

- New algorithm: gather_async

@ STE||AR GROUP



Extending Parallel Algorithms (await)

- New algorithm: gather_async

@ STE||AR GROUP



9/19/2016

STREAM Benchmark

- Assess memory bandwidth

. Series of parallel for loops, 3 arrays (a, b, c)
* copy step- Cc = a
- scalestep:b = k * ¢
- add two arrays:c = a + b
- triad step:a = b + k * ¢

- Best possible performance possible only if data 1s placed properly
« Data has to be located in memory of NUMA-domain where thread runs

- OpenMP: implicitly by using ‘first touch’, i.e. run initialization and
actual benchmark using same thread
- #pragma omp parallel for schedule(static)

Ne)
—
=
A
o
o
@)
[}
2
(@)
>
4
—
<
S
+
+
o
o
~
(%)
S
o
]
=
o
o=
-
(o]
)
o=
r—
[}
r—
r—{
o
=~
©
Ay

=
9)
n
o=
<
N
=
=
=i
=
5
(o]

@ STE||AR GROUP



STREAM Benchmark

@ STE||AR GROUP



STREAM Benchmark (CPU)

@ STE||AR GROUP




©
—
S
N
=~
>
—i
=
>

STREAM Benchmark: HPX vs. OpenMP

TRIAD STREAM Results
(50 million data points)
80
—0 0 - =
‘0 ~+HPX (1 NUMA Domain) S
= ——OpenMP (1 NUMA Domain) &
& 50 -e-HPX (2 NUMA Domains) :
< ~=-OpenMP (2 NUMA Domains) £
+ 40 L
-E —4 —& A S
'g 30 ;;j
: =3
20 A
1 2 3 4 5 6 7 8 9 10 11 12 5 é‘
Number of cores per NUMA Domain

@ STE||AR GROUP




JOSTEY] INWIR
910¢/61/6 rey] e

18 Y[B],) ++) UISPOJA Ul WSI[e[[BIR]

0),
-
a¥
O

-
+

o0
=
o

-

D
42

P4
]




STREAM Benchmark (GPU)

@ STE||AR GROUP



©
—
o
N
~~
S
—
~~
S

STREAM Benchmark: HPX vs. OpenCL

STREAM Scaling Array Sizes

100 iterations

250

STREAM Benchmark Results

400 MB per array, 100 iterations

250 : ;
HEl OpenMP Bl native CUDA
200 B HPX-CPU [ HPX - CUDA G
(@)
A
@ 200 g
e O
2 &
S 150 o
5 —_ =
3 5 150 =
o Qe =
© 100 o
g E &
g € 100 5
< 2 _,g
50 Eg 5
50 i
< 2
0 ! g5
10° 10* S =
Array Size (MB) 0

2 g g %
o ° < =
o %) -

@ STE||AR GROUP




JOSTEY] INWIR
910¢/61/6 rey] e

18 Y[B],) ++) UISPOJA Ul WSI[e[[BIR]

-
o
o p=i
<+
v
N
o p=i
S
o
+
>
S




Dot-product: Parallel Execution

@ STE||AR GROUP



Dot-product: Vectorization

@ STE||AR GROUP



J9STRY] NWIIBE]
‘(910g uopdd) 1® N[e],) ++) UIOPOJA] Ul WSI[a[[BIe]

910¢/61/6

dnpeeadg U00TIBZII0300 A
0 0 0
™ i ™ — — =) o
o
—
=
=1
=
5]
5
0 &
m :
o : ©
o
A
o
o
<
o
S ©
<
)
—
[
e}
+ <
e (&)
=
1 =
o
~
£
+=
=} ™
A
e
o] o~ © 0 <t a2 N — o
210)) T J0A0 dnpoadg

Number of Cores

Results

Dot-product of 1,000,000 Points

~
[
Q9
2
<
Z
~
<
o3
2 5 5
.m 2 ~
o=
o0 o
t S
S
Q |3
o o
u ) © W © W N O W © * N o
— N — — e —
nm a10)) T I0A0 dnpoeadg
O | _
=) - .2
O | % g
@)
~
r =
-
o
Ay | Z .
|
o ]
o~ © 0 <t ] N — o
a10)) T 19A0 dnpeddg

@ STE||AR GROUP



J9STRY] NWIIBE]

‘(910g uopdd) 1® N[e],) ++) UIOPOJA] Ul WSI[a[[BIe]

S
o
3=
D
V
o
D
-
o
o p=nf
e
o p=nf
HE
o
S
al¥




Finding Min/Max on Host

@ STE||AR GROUP



Finding Min/Max on GPU

@ STE||AR GROUP



JOSTEY] INWIR
910¢/61/6 rey] e

18 Y[B],) ++) UISPOJA Ul WSI[e[[BIR]

oN
-
. =
e
&
P
L
QD
==
al
Q
o
QO
]




Automatic Loop Prefetching

@ STE||AR GROUP



Automatic Loop Prefetching (Results)

TRIAD STREAM Results (1 NUMA Domain)

—&—HPX(With Prefetching) - 100,000 data --®-- HPX(Without Prefetching) - 100,000 data
—eo— HPX(With Prefetching) - 1,000 data --®-- HPX(Without Prefetching) - 1,000 data
2500
2000
o
f— +
& 1500 )
2, G
= &=
E e
2 +
£ 1000 @)
M =l
~
e
(&)
e)
S oo
500 o 9
=
£ i
s
-
= E
0 1 2 3 4 5 6 7 8 9 © =
AT

Number of Threads

@ STE||AR GROUP




CENTER FOR COMPUTATION
& TECHNOLOGY

Ot
Qo

Parallelism in Modern C++ (Talk at CppCon 2016),

Hartmut Kaiser

9/19/2016




